NOTES

$Ln_2Cu_2O_5$ Compounds [Ln : Lu, Yb, Tm, Ho, Er, Dy, Tb, and Y]

In the process of establishing the phase diagram of the Yb₂O₃-Fe₂O₃-CuO system in air at 1000°C, Kimizuka and Takayama prepared a new compound, Yb₂Cu₂O₅, and reported its *d*-spacings and relative intensities of powder X-ray diffraction (1). Uhlig and Hahn (2) synthesized the Cu₂Y₂O₅ compound at 1000°C in air and reported its crystal data (space group: P_2 , a = 13.60 (Å), b = 3.27 (Å), c = 13.60 (Å), and $\beta = 133.15^\circ$, z = 4, Dx = 5.79). In the present note, we report crystal data of Yb₂Cu₂O₅ and its isostructural compounds, Ln_2 Cu₂O₅ [Ln: Lu, Yb, Tm, Ho, Er, Dy, Tb, and Y], and their synthesis conditions.

 Ln_2O_3 (99.9%) and CuO (reagent grade) were used as starting materials. Prior to mixing, each Ln_2O_3 was heated at 1200°C for 2 days and CuO was heated at 1000°C in air for 1 day. Each mixture of Ln_2O_3 : CuO = 1:2 (in mole ratio) was fully mixed in an agate mortar and was placed in a Pt crucible. Every sample was heated at 1000°C in air for 1 week. After heat treatment, each sample was rapidly cooled to room temperature. The sample weights were checked before and after heat treatment. No weight change due to reduction of CuO to Cu₂O was detected (3). The X-ray powder diffraction patterns of the samples thus obtained showed that they were isostructural compounds. Each compound has bluegreen color. Based upon Uhlig and Hahn's

0022-4596/82/060322-03\$02.00/0 Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

conclusion, we tried to index each X-ray powder diffraction peak of $Ln_2Cu_2O_5$, but we could not index all of them. Using Ito's method (4), we successfully indexed the powder diffraction patterns of each compound. For instance, the results for $Yb_2Cu_2O_5$, assuming an orthorhombic system with a = 10.721(1) Å, b = 3.4323(2) Å, c = 12.344(1) Å, are shown in Table I. In order to assure the above results, we took electron diffractions of Y₂Cu₂O₅ by means of a 1000-keV microscope. The crystal was tilted in the electron microscope to examine the distribution of the diffraction spots. They showed that the above unit cell was a reduced one with a possible space group of Pnma (No. 62) or $Pna2_1$ (No. 33) (extinc-

TABLE I Powder X-Ray Data for Yb₂Cu₂O₅

			I
hkl	(A)	(A)	(%)
0 0 2	6.168	6.1718	4
201	4.912	4.9167	12
202	4.046	4.0470	50
011	3.306	3.3069	1
203	3.262	3.2639	26
111	3.159	3.1599	2
004	3.085	3.0859	9
210	2.8901	2.8905	27
211	2.8148	2.8144	100
204	2.6749	2.6744	80

TABLE I—Continued

	dama	dealed	I
h k l	(Å)	(Å)	(%)
013	2.6345	2.6357	60
401	2.6188	2.6191	24
113	2.5594	2,5594	3
311	2.4270	2.4271	3
213	2,3649	2.3652	4
312	2.2975	2.2975	3
205	2.2421	2.2423	8
214	2.1099	2.1096	5
006	2.0566	2.0573	12
412	1 9997	1.9986	46
206	1.9214	1 9207	5
413	1 8791	1 8792	34
405	1 8158	1 8158	8
601	1 7678	1 7683	ĩ
414	1 7434	1 7431	23
602)	1./454	1 7163)	25
020	1.7160	1 7162	15
120	1 6943	1 6946	2
216	1.6757	1.6761	7
022	1.6537	1.6534	, 1
603	1.6388	1 6389	18
221	1.6205	1.6203	10
610	1 5848	1 5849	13
222	1 5803	1 5800	15
017	1.5683	1.5685	10
604	1.5065	1.5065	10
004	1.5426	1.5430	5
612	1.5420	1.5351)	5
321	1.5349	1.5350	5
223	1.5187	1.5190	5
217	1.5054	1.5054	19
208	1.4826	1.4827	3
613	1.4792	1.4790	4
407	1.4731	1.4731	7
224	1.4443	1.4444	13
421	1.4353	1.4355	6
614	1.4099	1.4098	5
225	1.3628	1.3628	2
417	1.3537	1.3537	2
408	1.3371	1.3372	2
801	1.3324	1.3323	7
026	1.3179	1.3178	4
802	1.3095	1.3096	4
019	1.2735	1.2736	2
616	1.2556	1.2555	8
418	1.2465	1.2460	9
812	1.2235	1.2235	3
2 0 10	1.2029	1.2029	2

TABLE IILATTICE CONSTANTS OF Ln2Cu2O5

	a (Å)	b (Å)	c (Å)
Y2Cu2O5	10.793(1)	3.4933(2)	12.450(1)
$Tb_2Cu_2O_5$	10.855(1)	3.5444(4)	12.532(2)
$Dy_2Cu_2O_5$	10.833(1)	3.5180(2)	12.477(1)
Ho2Cu2O2	10.798(1)	3.4921(3)	12.463(1)
Er ₂ Cu ₂ O ₅	10.775(Å)	3.4703(4)	12.439(1)
Tm ₂ Cu ₂ O ₅	10.737(1)	3.4527(2)	12.373(1)
Yb ₂ Cu ₂ O ₅	10.721(1)	3.4323(2)	12.344(1)
Lu ₂ Cu ₂ O ₅	10.695(1)	3.4088(2)	12.356(1)

tion rule: $k + 1 \neq 2n$ for 0kl, and $h \neq 2n$ for h0l). Observed specific gravity of $Y_2Cu_2O_5$ by means of a pycnometric method was 5.45 ± 0.02 at 20°C, which agrees with the calculated one of 5.45 based on the assumption of four $Y_2Cu_2O_5$ in one unit cell.

The lattice constants of $Lu_2Cu_2O_5$, $Tm_2Cu_2O_5$, $Er_2Cu_2O_5$, $Ho_2Cu_2O_5$, $Dy_2Cu_2O_5$, $Tb_2Cu_2O_5$, and $Y_2Cu_2O_5$ are shown in Table II.

In order to grow single crystals of $Yb_2Cu_2O_5$, we heated the $Yb_2Cu_2O_5$ powder at 1000°C under 20 kbar for 11 hr and obtained single crystals which made it possible to measure intensities of a single-crystal X-ray diffraction. Maximum size of a single crystal grown by means of this method was about $20 \times 50 \times 50 \ \mu m$. The Weissenberg and precession photographs of a single crystal showed the same crystal data as those in electron diffraction. The cyrstal structure analysis of $Yb_2Cu_2O_5$ is in progress.

References

- 1. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem., in press.
- 2. Uhlig and Hahn, ASTM, 30-515 (JCPDS-1980).
- 3. A. M. M. GADALLA, W. F. FORD, AND J. WHITE, Trans. Brit. Ceram. Soc. 62, 57 (1963).

 L. V. AZAROFF AND M. J. BUERGER, "The Powder Method in X-Ray Crystallography," pp. 106-123, McGraw-Hill, New York (1958). Акіјі Үамамото Такетозні Fujita

Noboru Kimizuka* Eiji Takayama Shigeo Horiuchi

* All correspondence should be addressed to Noboru Kimizuka. National Institute for Research in Inorganic Materials 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken Japan 305

Received December 21, 1981

324